On the pagenumber of k-trees

Jennifer Vandenbussche*, Douglas West[†], Gexin Yu[‡]
January 4, 2008

Abstract

A p-page embedding of G is a vertex-ordering π of V(G) (along the "spine" of a book) and an assignment of edges to p half-planes (called "pages") such that no page contains crossing edges. The pagenumber of G is the least p such that G has a p-page embedding. We disprove a conjecture of Ganley and Heath by showing that for all $k \geq 3$, there are k-trees that do not embed in k pages. On the other hand, we present an algorithm that produces k-page embeddings for a special class of k-trees.

1 Introduction

The pagenumber (or book thickness) of a graph G was introduced by Bernhart and Kainen [1]. Given a graph G, a p-page embedding of G is a vertex ordering π of V(G) (along the "spine" of a book) and an assignment of edges to p half-planes (called "pages") such that no page contains crossing edges. Equivalently, each page consists of an outerplanar embedding of a subgraph of G having the vertices ordered according to π on the unbounded face. These subgraphs decompose G. The pagenumber of G, denoted f0, is the minimum f1 such that f2 has a f2-page embedding. We say that f3 "embeds in f3 pages" when f4 by f6.

Note that bt(G) = 1 if and only if G is outerplanar. Bernhart and Kainen [1] observed that $bt(G) \leq 2$ if and only if G is a subgraph of a Hamiltonian planar graph. Pagenumber has been studied on several classes of graphs, including planar graphs [9], graphs with genus g [5, 6] and complete bipartite graphs [3, 7]. In this paper, we study pagenumber of k-trees.

Among several equivalent definitions of k-trees, the inductive definition is convenient for our arguments. A k-tree is either the complete graph K_k or a graph obtained from a k-tree G by adding one vertex whose neighborhood is a k-clique in G (a k-clique is a set of k pairwise adjacent vertices). The 1-trees are simply the trees, which are outerplanar, and hence they

^{*}Mathematics Department, University of Illinois, jarobin1@math.uiuc.edu. This work supported in part by the department's 2004 REGS program (Research Experiences for Graduate Students).

[†]Mathematics Department, University of Illinois, west@math.uiuc.edu. Supported in part by NSA grant H98230-06-1-0065.

[‡]Department of Mathematics, Vanderbilt University, gexinyu@math.uiuc.edu. Supported in part by NSF grant DMS-0652306.

have pagenumber 1. Chung, Leighton, and Rosenberg [2] showed that the pagenumber of every 2-tree is at most 2. Ganley and Heath [4] exhibited k-trees that require k pages and proved that if G is a k-tree, then $\operatorname{bt}(G) \leq k+1$. They conjectured that every k-tree embeds in k pages; we disprove this conjecture.

Theorem 1. For $k \geq 3$, there is a k-tree that does not embed in k pages.

First, we present an algorithm that embeds many k-trees in k pages, using tree-decompositions of graphs. Let G[X] denote the subgraph of G induced by vertex set X. A tree-decomposition of a graph G consists of a host tree T and a family $\{X_i : i \in V(T)\}$ of subsets of V(G) (called bags, perhaps originally by Bruce Reed) such that (1) $G = \bigcup_{i \in V(T)} G[X_i]$ and (2) for each $v \in V(G)$, the set $\{i : v \in X_i\}$ induces a subtree of T. We use (T, \mathbf{X}) to denote a tree-decomposition in which \mathbf{X} is the set of bags.

The width of a tree-decomposition (T, \mathbf{X}) is $\max_{i \in V(T)} \{|X_i| - 1\}$. The treewidth of G is the minimum width among all tree-decompositions of G. (Since every graph has a tree-decomposition with all vertices in one bag, treewidth is well-defined.) A tree-decomposition of width k is smooth if the bags for any two adjacent vertices of the host tree have k common elements. By the inductive definition, a k-tree has a smooth tree-decomposition such that every bag is a (k+1)-clique.

Togasaki and Yamazaki [8] showed that if G is a k-tree and G has a smooth tree-decomposition whose host tree is a path, then $\operatorname{bt}(G) \leq k$. We enlarge the family of k-trees for which the conclusion holds.

Theorem 2. If a k-tree G has a smooth tree-decomposition with width k such that the host tree has maximum degree at most 3, then $bt(G) \leq k$.

The k-tree we construct in Theorem 1 has a smooth tree-decomposition whose host tree has maximum degree k + 2. This leaves open the question of finding the maximum D such that every k-tree having a smooth tree-decomposition whose host tree has maximum degree at most D has a book embedding in k pages. We have shown that $3 \le D < k + 2$.

2 Construction of k-Page Embeddings

We provide an algorithm that produces a k-page embedding of a k-tree G from a smooth tree-decomposition (T_0, \mathbf{X}_0) of G in which T_0 has maximum degree at most 3.

Since the members of \mathbf{X}_0 correspond bijectively to the vertices of T_0 , we refer to the bags as vertices of T_0 . Choose a leaf bag $\{a_1, \ldots, a_{k+1}\}$ of T_0 ; it will be convenient to name this bag A_{k+1} . Note that exactly one vertex of A_{k+1} does not appearing in the neighbor of A_{k+1} in T_0 ; index the elements of A_{k+1} so that this vertex is a_{k+1} .

In T_0 , each bag X is reached by exactly one path from A_{k+1} . Since (T_0, \mathbf{X}_0) is smooth, X contains exactly one vertex that does not appear in any vertex of this path other than X. For each bag X_i , we let x_i denote this distinguished vertex.

Conversely, since G is connected, every vertex outside A_{k+1} appears in exactly one closest bag to A_{k+1} and is the distinguished vertex for that bag. To have every vertex of G be

the distinguished vertex for some bag, we modify T_0 by adding a path $\langle A_1, \ldots, A_k \rangle$ with $A_i = \{a_1, a_2, \ldots, a_i\}$ and A_k adjacent to A_{k+1} . Let T denote the new tree, and let $\mathbf{X} = \mathbf{X}_0 \cup \{A_1, \ldots, A_k\}$; now (T, \mathbf{X}) is a tree-decomposition of G.

We refer to vertex A_1 as the root of T. Viewed from A_1 , the distinguished vertex for each A_i is a_i . The new tree-decomposition (T, \mathbf{X}) is not smooth, but the k added bags with their distinguished vertices simplify the presentation of the proof. The vertices of G now correspond bijectively to the bags. For $x \in V(G)$, we refer to the bag whose distinguished vertex is x as \overline{x} ; when the context is clear we write X for \overline{x} .

While exploring T from the root, the algorithm uses this bijection from V(G) to V(T) to produce a vertex ordering and a k-edge-coloring of G so that the endpoints of two edges with the same color do not occur alternately in the vertex ordering. Such an ordering and coloring define a k-page embedding. The idea is to use the correspondence between vertices and bags to color the edges of T using k+1 colors, and then use the edge-coloring of T to produce the k-edge-coloring of G.

In a graph, a u, v-path is a path from u to v. We say that X is an ancestor of Y and Y is a descendant of X if X lies on the A_1, Y -path in T. We will use the following statement about the relationship between G and T to define the edge-coloring of G.

Lemma 3. If $xy \in E(G)$, then X is an ancestor of Y or Y is an ancestor of X in T.

Proof. If $xy \in E(G)$, then x and y must appear in some common bag; since the bags containing a vertex of G induce a subtree of T, every bag in the X,Y-path in T contains x or y. Note also that x does not appear in any bag that is an ancestor of X in the rooted tree T. The claim follows.

We refer to the subtrees of T rooted at the left and right children of X as the (left and right) subtrees of X.

2.1 The algorithm

First we produce the vertex ordering π from T. Initialize π to (a_1) . Begin a breadth-first search of T from bag A_1 . Designate the child(ren) of a bag X in T as its left-child or right-child, arbitrarily. When searching from bag X, having already assigned vertex x a position in π , place the vertex corresponding to its left child (if it has one) immediately before x in π and the vertex corresponding to its right child (if it has one) immediately after x in π . The vertices for bags in the left subtree of X comprise a consecutive segment immediately before x under x, and those corresponding to the right subtree of X comprise a consecutive segment immediately after x under x.

For a bag $Y \in V(T) - \{A_1, \dots, A_{k+1}\}$ with parent X, recall that |X - Y| = 1 and that $\overline{X - Y}$ denotes the bag associated with the vertex of X - Y. When Z is an ancestor of Y, we use Z : Y to denote the edge incident to Z on the Z, Y-path in T.

Define a (k+1)-coloring f of E(T) as follows. For each edge in T, one endpoint is the parent of the other. When X is the parent of Y in T, let

$$f(XY) = \begin{cases} j, & \text{if } XY = A_j A_{j+1}; \\ k+1, & \text{if } X \notin \{A_1, \dots, A_k\} \text{ and } \overline{X-Y} = X; \\ f(\overline{X-Y}:Y), & \text{if } X \notin \{A_1, \dots, A_k\} \text{ and } \overline{X-Y} \neq X. \end{cases}$$

We use f to define a (k+1)-coloring g of the edges of G. If $xy \in E(G)$, then by Lemma 3, we may assume by symmetry that X is an ancestor of Y. Define g(xy) = f(X : Y).

2.2 Validity of the algorithm

First we show that g uses only the colors 1 through k.

Lemma 4. No edge in G is assigned color k+1 under g.

Proof. The color g(xy) is the color on an edge in T. Since g(xy) = f(X : Y), we have g(xy) = f(XZ), where Z is the child of X on the X, Y-path in T. If f(XZ) = k + 1, then the definition of f implies that x appears in no bag in the subtree of X that contains Z, and thus x and y could not appear in a bag together and could not form an edge.

For colors other than k+1, we think of the color on an edge from X to a child of it in T as the color associated with x in the subtree rooted at that child. For such an edge XY, let w be the unique vertex of X-Y. When $f(XY) \neq k+1$, the value f(XY) is the color associated with w in the subtree of W that contains XY, by the definition of f.

Lemma 5. If X is an ancestor of Y such that $x \in Y$, then the color j associated with x in the subtree of X that contains Y does not appear on any edge of the X, Y-path in T except the initial edge X : Y.

Proof. Consider a bag X closest to A_1 in T at which the claim fails. We have $j \leq k$, since otherwise $x \notin Y$, as observed in the proof of Lemma 4. Note that j = f(X : Y). If j appears again on the X, Y-path, then let ZZ' with parent Z be the edge on which it first reappears. Since j reappears on ZZ', the vertex Z cannot be A_j . Hence the definition of f yields f(ZZ') = f(W : Z'), where $\{w\} = Z - Z'$. Hence $w \notin Y$; since $x \in Y$, we have $x \neq w$. We conclude that W is an ancestor of X, since ZZ' was the first reappearance of j. Now j is the color associated with w in the subtree of W that contains Z, and $w \in Z$. This contradicts the choice of X as the failure closest to A_1 .

Proof of Theorem 2. By Lemma 4, g is a k-edge-coloring of G. It remains to show that g does not give the same color to edges whose endpoints alternate in π . Let xy and uv be such edges. By Lemma 3, we may assume that X is an ancestor of Y and U is an ancestor of Y. Since the algorithm is symmetric with respect to left and right, we may also assume that Y is in the right subtree of X, and hence $\pi(x) < \pi(y)$. Recall that g(xy) = f(X : Y).

We show that $g(uv) \neq g(xy)$. Since the right subtree of X is listed immediately after X under π and the edge uv crosses the edge xy, the right subtree of X must contain U or V.

Suppose first that U is in the right subtree of X. This implies that V is also in the right subtree of X, since U is an ancestor of V.

If V is in the left subtree of U, then $\pi(x) < \pi(v) < \pi(y) < \pi(u)$. Since the vertices of this subtree appear just before U in the ordering, Y also must be in the left subtree of U. Thus U lies along the X, Y-path in T, and by Lemma 5 the color g(xy) associated with X in its right subtree cannot be the same as the color g(uv) associated with U in its left subtree.

On the other hand, if V is in the right subtree of U, then $\pi(x) < \pi(u) < \pi(y) < \pi(v)$, and we see that Y is also in the right subtree of U. Again, U lies along the X, Y-path in T, and Lemma 5 again yields $g(uv) \neq g(xy)$.

Finally, if U is not in the right subtree of X, then V must be. Since U is an ancestor of V but is not in the right subtree of X, it must be an ancestor of X. Now X lies along the U, V-path in T. By Lemma 5, we conclude that $g(uv) \neq g(xy)$. Therefore, our coloring g together with our ordering π yields a valid book embedding of G in K pages. \square

Given the smooth tree-decomposition used by the algorithm, the computations by which the algorithm produces the k-page embedding can easily be implemented to run in constant time per edge. Since k is fixed, this is linear in the number of vertices.

3 A k-Tree With No k-Page Embedding

We construct a k-tree G that does not embed in k pages. Given any ordering of V(G), we use pigeonholing arguments to produce an induced subgraph of G that cannot be embedded in k pages under that ordering. This suffices, since a k-page embedding of G contains a k-page embedding of every induced subgraph.

The graph G has a central k-clique X with vertices x_1, \ldots, x_k . Next we add vertices y_1, \ldots, y_{kN} , where $N = (k^2 + k + 5)$, each adjacent to all of X. Finally, we add many vertices, called *children*, each adjacent to k-1 vertices in X and one y_i . A child has type(i, j) if it is adjacent to y_i and nonadjacent to x_j . There are k^2N different types of children. We create 3k(Nk + k + N) children of each type, so G altogether has $3k^3N(Nk + k + N)$ children. We refer to all children adjacent to vertex x_i (or y_i) as the *children of* x_i (or y_i).

Fix a circular ordering π of V(G); we will show that G has no k-page embedding under π . By the Pigeonhole Principle, there are at least N vertices of $\{y_1, \ldots, y_{kN}\}$ between some two vertices of X. Hence we may assume by relabeling that $x_1, x_2, \ldots, x_k, y_1, y_2, \ldots, y_N$ appear in that order in π , with their children somehow interspersed. We delete the remaining vertices of y_1, \ldots, y_{kN} and all their children to obtain an induced subgraph G_1 . Let $Y = \{y_1, \ldots, y_N\}$, and call $X \cup Y$ the parents. Two vertices u and v are the endpoints of two segments in π . Sometimes one of those segments does not have internal vertices from both X and Y; in this case we refer to those internal vertices as the vertices between u and v.

Lemma 6. Within π , there is a subordering consisting of $X \cup Y$ and 3k children of each type in G_1 , such that the children of any type appear consecutively.

Proof. We iteratively select 3k children of some type, until we obtain all the types. Starting from a vertex a (say $a = x_1$, for example), a step ends when we reach a parent vertex or

obtain 3k children of the same unselected type. In the latter case, select these 3k vertices. In either case, let the last vertex reached be a and continue.

We claim that all types are selected by the time we return to x_1 . Suppose that a particular type is not selected. In each step, we see at most 3k-1 vertices of that type. The number of steps is r+k+N, where r is the number of types selected. Since there are 3k(Nk+k+N) children of each type, we must have selected children of all Nk types.

Let G_2 be the subgraph of G_1 induced by the parents and the children selected in Lemma 6. We will show that G_2 does not embed in k pages under π . As we discard vertices to study smaller subgraphs, we refer to the ordering of the remaining vertices within π when we say that the induced subgraph has no k-page embedding under π .

We say that vertices a_1, \ldots, a_m form a twist of size m with b_1, \ldots, b_m if $a_1, \ldots, a_m, b_1, \ldots, b_m$ appear in that order in π and a_i and b_i are adjacent for $1 \leq i \leq m$. Note that if a vertex ordering contains a twist of size m, then every book embedding using that ordering requires at least m pages, as there are m pairwise intersecting edges induced by the vertices of the twist that require distinct pages.

A set Z of children of the same type have the same neighborhood in G. In a k-page embedding of G_2 , we say that the vertices of Z have the same edge assignment if for every neighbor v of the vertices in Z, the edges from v to Z lie on the same page. We use N(v) for the set of neighbors of vertex v in G.

Lemma 7. In a k-page embedding of G_2 under π , the central k children of any one type have the same edge assignment.

Proof. Let z be a child of type (i, j), and let v_1, \ldots, v_k be the neighbors of z in order of their appearance in π . Group the 3k consecutive children of type (i, j) into three runs A, B, C of size k. For $v_r \in N(z)$, we show that all edges from v_r to B lie on the same page.

Fix vertices a_1, \ldots, a_{r-1} in A and c_{r+1}, \ldots, c_k in C. Given $z' \in B$, note that the vertices $a_1, \ldots, a_{r-1}, z', c_{r+1}, \ldots, c_k$ form a twist of size k with v_1, \ldots, v_k . Since a_1, \ldots, a_{r-1} and c_{r+1}, \ldots, c_k are fixed, only the edge from v_r to a vertex of B varies, and it must avoid the k-1 pages of the other edges in the twist. Hence all edges from v_r to B lie on the same page. Since this holds for all r, the vertices of B have the same edge assignment. \Box

Let G_3 be the subgraph of G_2 induced by the parents and the k central children of each type. In fact, we will further restrict the vertex set by keeping only five vertices of Y and their children, along with X. The next simple observation using twists enables us to select a few special vertices of Y.

Lemma 8. Let $x_0 = y_N$ and $x_{k+1} = y_1$. In a k-page embedding of G_3 under π , for every j with $0 \le j \le k$, at most k vertices of Y have children between x_j and x_{j+1} .

Proof. Suppose that $\{y_{i_1}, \ldots, y_{i_{k+1}}\}$ have children between x_j and x_{j+1} , with $i_1 < \cdots < i_{k+1}$, and let z be a child of $y_{i_{j+1}}$ between x_j and x_{j+1} . Now $y_{i_1}, \ldots, y_{i_{k+1}}$ form a twist of size k+1 with $x_1, x_2, \ldots, x_j, z, x_{j+1}, \ldots, x_k$, preventing G_3 from embedding in k pages.

In Lemma 7, we proved that in a k-page embedding of G_3 under π , the children of any one type have the same edge assignment (and appear consecutively). By Lemma 8, at most k(k+1) vertices of Y have children (in G_3) along the part of the circle from y_N to y_1 that contains X. Since $N = k^2 + k + 5 = k(k+1) + 5$, at least five vertices of Y have all their children (all k types) along the part of the circle from y_1 to y_N .

In particular, there are at least three such vertices of Y aside from y_1 and y_N . Let y_a, y_b, y_c be three such vertices, with a < b < c. Let $Z_{i,j}$ denote the set of k children of type (i,j) in G_3 , and let $Z = \bigcup_{(i,j) \in \{a,b,c\} \times [k]} Z_{i,j}$. Let G_4 be the subgraph of G_3 induced by $X \cup \{y_1, y_a, y_b, y_c, y_N\} \cup Z$. It suffices to show that G_4 does not embed in k pages under π .

Assume henceforth that we have a k-page embedding of G_4 under π .

The sets $Z_{i,j}$ for $j \in [k]$ and $i \in \{a, b, c\}$ are located along the part of the circle from y_1 to y_N that avoids X. We say that $Z_{i,r}$ is before $Z_{i,s}$ if it is encountered first when following this part of the circle from y_1 to y_N (similarly define after).

Lemma 9. For r < s, if $Z_{i,r}$ and $Z_{i,s}$ are on the same side of y_i (both before y_i or both after y_i), then $Z_{i,r}$ is before $Z_{i,s}$.

Proof. We state the proof for when $Z_{i,r}$ and $Z_{i,s}$ are both before y_i ; the other argument is symmetric. Suppose that $Z_{i,s}$ is before $Z_{i,r}$. Since $s \in [k]$, we may choose $S \subseteq Z_{i,s}$ and $R \subseteq Z_{i,r}$ with |S| = s and |R| = k + 1 - s. Since the vertices of $Z_{i,j}$ are adjacent to all of $X - \{x_j\}$, we have $S \subseteq N(x_r)$ and $R \subseteq N(x_s)$. We conclude that y_i, x_1, \ldots, x_k form a twist of size k + 1 with the vertices of $S \cup R$.

The earlier children of y_i are those before y_i ; the others are its later children.

Lemma 10. All edges joining y_i to its earlier children lie on the same page. Symmetrically, those joining y_i to its later children lie on the same page.

Proof. Consider the earlier children of y_i . By Lemma 7, the vertices of a set $Z_{i,j}$ have the same edge assignment. Hence it suffices to show that an edge from y_i to $Z_{i,r}$ and an edge from y_i to $Z_{i,s}$ are on the same page.

We may assume that $Z_{i,r}$ is before $Z_{i,s}$. Choose $w \in Z_{i,r}$, and let z be the first vertex of $Z_{i,s}$. We have picked z so that all edges from X to the rest of $Z_{i,s}$ cross y_iz (and also y_iw). The k-1 vertices of $Z_{i,s} - \{z\}$ form a twist with the k-1 vertices of $X - \{x_s\}$. Therefore, only one page remains for y_iz and y_iw .

Lemma 11. If x_1, \ldots, x_k form twists with both v_1, \ldots, v_k and w_1, \ldots, w_k , where v_1, \ldots, v_k come before w_1, \ldots, w_k except possibly $v_k = w_1$, then for $1 \le r \le k$ the edges incident to x_r in the two twists are on the same page.

Proof. Observe that $x_1, \ldots, x_{r-1}, x_{r+1}, \ldots, x_k$ form a twist with $v_1, \ldots, v_{r-1}, w_{r+1}, \ldots, w_k$. The edges $x_r v_r$ and $x_r w_r$ cross all k-1 edges formed by the twist.

Lemma 12. If $Z_{i,1}$ is before $Z_{i,k}$ for some i in $\{a,b,c\}$, then G_4 does not embed in k pages under π .

Proof. The vertices of X form twists with both $\{y_1\} \cup Z_{i,1}$ and $Z_{i,k} \cup \{y_N\}$. By Lemma 11, the edges incident to x_r in the two twists are on the same page, which we call page r, for $1 \le r \le k$. By Lemma 7, the edges from x_r to all of $Z_{i,1} \cup Z_{i,k}$ are on the same page.

Suppose that some $Z_{i,j}$ lies after $Z_{i,1}$ and before $Z_{i,k}$. Any edge from x_r to $Z_{i,j}$ crosses the edges from x_1, \ldots, x_{r-1} to $\{y_1\} \cup Z_{i,1}$ and from x_{r+1}, \ldots, x_k to $Z_{i,k} \cup \{y_N\}$. Therefore, all edges from x_r to $Z_{i,j}$ lie on page r.

Since $Z_{i,1}$ is before $Z_{i,k}$, it follows that $Z_{i,1}$ is before y_i or $Z_{i,k}$ is after y_i . If both, then since $k \geq 3$, some $Z_{i,j}$ is after $Z_{i,1}$ and before $Z_{i,k}$. If $Z_{i,j}$ is before y_i , then $Z_{i,1}$ and $Z_{i,j}$ are before y_i ; otherwise, $Z_{i,k}$ and $Z_{i,j}$ are after y_i . By symmetry, we may assume the former.

Let z be the first vertex of $Z_{i,j}$. Since y_iz crosses the edges from $X - \{x_j\}$ to the last vertex of $Z_{i,j}$, edge y_iz lies on page j. Let z' be the first vertex of $Z_{i,1}$. Since y_iz' crosses the edges from $X - \{x_1\}$ to the last vertex of $Z_{i,1}$, edge y_iz' lies on page 1. However, since $j \neq 1$, this contradicts Lemma 10. We conclude that G_4 does not embed in k pages under π .

Lemma 13. If $Z_{i,k}$ is before $Z_{i,1}$ for all $i \in \{a,b,c\}$, then G_4 does not embed in k pages under π .

Proof. For $i \in \{a, b, c\}$, by Lemma 9, y_i is after $Z_{i,k}$ and before $Z_{i,1}$. Since $k \geq 3$, we may choose $j \in [k] - \{1, k\}$. Now $Z_{b,j}$ occurs before or after y_b ; by symmetry, we may assume that $Z_{b,j}$ is before y_b (hence also before $Z_{b,k}$, by Lemma 9). Now consider the location of y_a .

Case 1: y_a is after some child of y_b (on the left in Fig. 1). Let $Z_{b,r}$ be the last k children of y_b before y_a . Note that r > 1. Now y_b, x_1, \ldots, x_k form a twist of size k + 1 with r vertices of $Z_{b,r}$, y_a , and k - r vertices of $Z_{a,1}$ ($Z_{a,1}$ is after y_a by Lemma 9; this contribution is empty if r = k). Hence in this case G_4 does not embed in k pages under π .

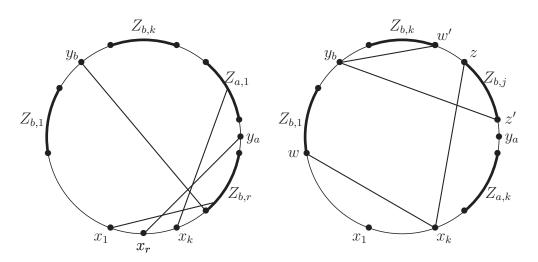


Figure 1: The cases of Lemma 13 (twist of size k + 1, crossing on a page).

Case 2: y_a is before all children of y_b (on the right in Fig. 1). Thus y_a is before $Z_{b,j}$, and $Z_{a,k}$ is before y_a . Since j < k, vertices x_1, \ldots, x_k form a twist with k-1 vertices of $Z_{a,k}$ and

the last vertex of $Z_{b,j}$ (call it z). Also recall that x_1, \ldots, x_k form a twist with $\{y_b\} \cup Z_{b,1}$. By Lemma 11, $x_k z$ and $x_k w$ lie on the same page, where w is the last vertex of $Z_{b,1}$.

Let w' be the first vertex of $Z_{b,k}$. Note that x_1, \ldots, x_k form a twist with $(Z_{b,k} - \{w'\}) \cup \{w\}$. Since $y_b w'$ crosses its k-1 edges other than $x_k w$, edges $y_b w'$ and $x_k w$ lie on the same page.

Finally, by Lemma 10, y_bw' lies on the same page with y_bz' , where z' is the first vertex of $Z_{b,j}$. Now y_bz' and x_kz lie on the same page, but they cross. Hence in this case also G_4 does not embed in k pages under π .

Lemmas 12 and 13 eliminate all possibilities for k-page embeddings and complete the proof of the theorem.

Finally, we remark that the k-tree G constructed for the proof of Theorem 1 has a smooth tree-decomposition with a host tree of maximum degree k+2. Let $X_i = X \cup \{y_i\}$ for $1 \le i \le kN$. Form a path with vertices X_1, \ldots, X_{kN} . For each X_i and x_j , form a path with endpoint X_i whose vertices correspond to bags formed by adding to $X_i - \{x_j\}$ one child of type (i, j). This is the desired tree-decomposition of G. As mentioned in the introduction, this leaves the question of what is the largest degree of host trees in tree-decompositions of k-trees that guarantees the existence of a k-page embedding.

References

- [1] F. Bernhart and P.C. Kainen, The book thickness of a graph. J. Combin. Theory Ser. B 27 (1979), 320–331.
- [2] F.R.K. Chung, F.T. Leighton, A.L. Rosenberg, Embedding graphs in books: a layout problem with applications to VLSI design. SIAM J. Algebr. Discr. Meth. 8 (1987), 33–58.
- [3] H. Enomoto, T. Nakamigawa, K. Ota, On the pagenumber of complete bipartite graphs. J. Combin. Theory Ser. B 71 (1997), 111–120.
- [4] J. Ganley and L. Heath, The page number of k-tree is O(k). Discr. Appl. Math. 109 (2001), 215–221.
- [5] L.S. Heath, S. Istrail, The page number of genus g graphs is O(g). J. Assoc. Comput. Mach. 39 (1992), 479–501.
- [6] S.M. Malitz, Genus g graphs have pagenumber $O(\sqrt{g})$. J. Algorithms 17 (1994), 85–109.
- [7] D.J. Muder, M.L. Weaver, D.B. West, Pagenumber of complete bipartite graphs. *J. Graph Theory* 12 (1988), 469–489.
- [8] M. Togasaki and K. Yamazaki, Pagenumber of pathwidth-k graphs and strong pathwidth-k graphs. Discr. Math. 259 (2002), 361–368.
- [9] M. Yannakakis, Embedding planar graphs in four pages. 18th Annual ACM Symposium on Theory of Computing (Berkeley, CA, 1986) J. Comput. System Sci. 38 (1989), 36–67.